- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Ge, Qing (3)
-
Rong, Libin (3)
-
Wang, Xia (3)
-
Zhao, Hongyan (2)
-
Li, Jie (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Direct-acting antiviral agents (DAAs) are known to interfere with various intracellular stages of the hepatitis C virus (HCV) life cycle and have demonstrated efficacy in treating HCV infection. However, DAA monotherapy can lead to drug resistance due to mutations. This paper explores the impact of DAA therapy on HCV dynamics using a multiscale age-structured partial differential equation (PDE) model that incorporates intracellular viral RNA replication within infected cells and two strains of viruses representing a drug-sensitive strain and a drug-resistant mutant variant, respectively. We derived an equivalent ordinary differential equation (ODE) model from the PDE model to simplify mathematical analysis and numerical simulations. We studied the dynamics of the two virus strains before treatment and investigated the impact of mutations on the evolution kinetics of drug-sensitive and drug-resistant viruses, as well as the competition between the two strains during treatment. We also explored the role of DAAs in blocking HCV RNA replication and releasing new virus particles from cells. During treatment, mutations do not significantly influence the dynamics of various virus strains; however, they can generate low-level HCV that may be completely inhibited due to their poor fitness. The fitness of the mutant strain compared to the drug-sensitive strain determines which strain dominates the virus population. We also investigated the prevalence and drug resistance evolution of HCV variants during DAA treatment.more » « less
-
Wang, Xia; Ge, Qing; Zhao, Hongyan; Rong, Libin (, Applied Mathematical Modelling)
-
Ge, Qing; Wang, Xia; Rong, Libin (, International Journal of Biomathematics)In this paper, we propose a reaction–diffusion viral infection model with nonlinear incidences, cell-to-cell transmission, and a time delay. We impose the homogeneous Neumann boundary condition. For the case where the domain is bounded, we first study the well-posedness. Then we analyze the local stability of homogeneous steady states. We establish a threshold dynamics which is completely characterized by the basic reproduction number. For the case where the domain is the whole Euclidean space, we consider the existence of traveling wave solutions by using the cross-iteration method and Schauder’s fixed point theorem. Finally, we study how the speed of spread in space affects the spread of cells and viruses. We obtain the existence of the wave speed, which is dependent on the diffusion coefficient.more » « less
An official website of the United States government
